

Effect of straw bedding in pig housing on emissions of greenhouse gases

Karin Groenestein, Gert Jan Monteny, Leo den Hartog, Jos Metz

Animal welfare

Straw in pig husbandry

Cost,

Labour,

- Hygiene
- Incompatibility with manure drainage systems

Physical comfort Thermal comfort Exploration, Foraging, Rooting Chewing Nesting Maternal behaviour

-

Another potential -: Environmental issues Agricultural emissions: focus of the Netherlands

Focus for straw systems:

■ NH₃

N₂O

CH₄

Odour

Particulate Matter (PM10 and PM2.5)

Deep litter

- Mixture of litter and slurry
- High C/N ratio
- Anaerobic as well as aerobic conditions
- Methanogenese = CH_4
- Nitrification/denitrification = NH_3 , N_2O , (NO, N_2)

Literature review

Fatteners (n=13): NH_3 3.0-16.2g/d per pig CH_4 2.5-13.4g/d per pig N_2O 0.03-11.3g/d per pig

 Sows (n=1)

 NH_3 6.7-8.7
 g/d per pig

 CH_4 39
 g/d per pig

 N_2O 0.5
 g/d per pig

Key factors affecting emissions

	CH_4	N_2O	NH_3
Animal-related factors			
Age/Live weight	+	+	+
Amount and composition of feed	+	+	+
Water use	0	0	-

Key factors affecting emissions

	CH_4	N_2O	NH_3
Environment-relating factors			
Housing configuration	+/-	+/-	+/-
Air velocity	0	0	+
Temperature inside	+	+	+
Temperature outside	+	+	+

Key factors affecting emissions					
Factors related to slurry/litter mixture	CH_4	N ₂ O	NH ₃		
C/N ratio	+	+	-		
O2 concentration	-	+/-	+		
Surface area	0	0	+		
Maturity of litter/slurry mixture	+	+	0		
Optimal pH	7	6	+		
Temperature of the slurry/litter	+	+	+		
NH ₄ ⁺ concentration	-	+	+		
Volatile Solids concentration	+	0	0		
Drymatter	-	0	0		

Litter and slurry: complex ecosystem

Litter management affects keyfactors

Type of litter Amount of litter Depth of the litter bed Additives Addition of fresh litter Litter mixing Litter removal

Littered surface area Location of litter Sawdust, wood shavings, straw 50–1000 g/d per pig 0-70 cm Yes or no None to weekly None, two or three times a week partly; completely; daily; weekly; monthly; yearly 40–100% of total living area Resting, feeding or excretion area

Nitrous oxide

- C/N ratio and N₂O not well correllated
- Higher emissions with woodshavings and sawdust
- ws and sd contain more lignine and hemicellulose
- Straw contains more cellulose
- Cellulose is more biodegradable
- Biodegradability > C/N ratio

<u>Methane</u>

<u>CH4 from Digestive tract: endogene CH₄:</u> regular diets: 3-4 g/d Fibrous diets (250 g/kg) up to 10 g/d \blacksquare CH₄ from Slurry Slurry based systems fatteners: 2.5-30 g/d Litter based systems within this range No substantial CH₄ production in litter/slurry??

Methane

- Anaerobic bed
- Deep litter systems dairy: ca 1000 g/d CH₄ per cow
- Sows root, cows don't
- CH₄ in aerated top layer >> CO₂

Conclusions

N₂O and CH₄ from littered systems variable
 N₂O is lower with straw
 CH₄ is oxidised in rooted top layer
 With good litter management emissions of greenhouse gases can be limited

Thank you for your attention

