Global Methane and Nitrous Oxide Emissions and Reduction Potentials in Agriculture

Tomoko HASEGAWA and Yuzuru Matsuoka

Graduate school of Engineering, Kyoto University, Japan

June 30 - July 3, 2009, NCGG5, Wageningen, The Netherlands

Outline

- Background
- Objectives
- Feature
- Model
 - Structure
 - Assumption and Settings
- Result

Background

- Agriculture accounts for 14% of total GHG emission
- GHG reduction technology in agriculture
 - Have a high economic efficiency
 - Expected to play an important role

Considering technology changing process

- Important to show a feasible and realistic path.
- Long time gap between Kyoto target in 2008-2012 and a long-term target in 2050
- It is necessary to consider a historical change of technology's stocks.
- In many researches, however ,the historical change of technology stock is NOT considered.

Objectives

 (1) Estimation and evaluation of global GHG emission and reduction potentials in agriculture in 2000-2030
 (2) Specification of effective technologies, regions and emission sources with high reduction potentials

Emission sources

Emission Sources	Gases
Enteric fermentation	CH_4
Manure management	CH_{4} , N_2O
Cropland and Soils	N_2O
Rice paddy	CH_4 , N_2O

Methodology

Technology Selection Model

- Dynamic model
- How many introduced/working technologies are determined by people's selection;

Optimization problem to minimize total cost for 30 years.

Technology Selection Model

Objective function

$$\operatorname{Total}\operatorname{Cost} = \sum_{t} \sum_{r} \sum_{i} \sum_{l} \left\{ \begin{array}{l} \operatorname{Initial}\operatorname{Cost}_{r,t,i,l} \\ + \operatorname{O&M}\operatorname{Cost}_{r,t,i,l} \\ + \operatorname{Emission}\operatorname{Tax}_{r,t,i,l} \end{array} \right\} \to \operatorname{Min}.$$

r:region

t : year

i : a kind of cropland/ livestock

l : technology

Technology Selection Model

$$GHG Emission_{r,t} = \sum_{i} \sum_{l} \left(X_{r,t,i,l} \cdot f_{0r,i,l} \cdot (1 - d_l) \right)$$

r : region
t : year

i : a kind of cropland/ livestock

l : technology

 $X_{r,t,i,l}$: a ctivity of *i*, with technology *l*, region *r*, year *t*

 $f_{0r,i,l}$: e mission factor

 d_1 : reduction ratio of technology l, region r

Reduction technology

Rice Paddy	Cropland and Soils
Replacing ferilizers with ammonium sulfate	Spreader maintenance
Midseason drainage	Fertilizer Free Zone
Off-season straw	Optimize distribution geometry
Shallow flooding	Nitrogen inhibitor
Upland rice	Convert fertilizational tillage to no-tillage
Addition of Phosphogypsum	Split fertilization
Rice Straw Compost	Reduce fertilization to 70%
Direct Wet Seeding	Reduce fertilization to 80%
Alternative flooding/Drainage	Reduce fertilization to 90%

Manure Management

Anaerobic Digestion -Centralised plant

Anaerobic Digestion -Farmscale plant

Covered lagoon

Daily spread of manure

Slowing down anaerobic decomposition

Enteric Fermentation

Pribiotics

Propionate precursors

* IPCC(2007), USEAP(2006), Graveland et al.(2002), Graus et al.(2004) and Bates(1998, 2001)

Baseline Emission in 2000-2030

- World GHG emission will increase by 1.4 times by 2030.
- Emission from livestocks will increase at high growth rate.
- Emission from rice paddy will decrease.

Comparison with other estimates

This study's result is comparable to other estimates.

Where is Effective Region? In 2030

- Reduction Potential in China, India and USA is large.
- GHG reduction takes low costs in these regions.

 $0 \quad 100 \ 200 \ 300 \ 400 \ 500 \ 600$

GHG reduction potentials [MtCO2eq]

What is Effective Technology ?

Which is Effective Source? In 2030

Reduction Potentials [MtCO ₂ eq]		Marginal Abatement Cost [US\$/tCO2eq				
Emission sources	<0	<20	<50	<100	>100	
Enteric fermentation CH ₄	0	0	3	41	255	
Manure management CH ₄	0	95	98	110	345	
Manure management N ₂ O	0	56	57	62	205	
Rice paddy CH ₄	0	367	381	381	381	
Cropland and Soils N ₂ O	148	198	198	198	217	
Total	148	716	737	793	1403	

35% of total GHG emission from agriculture in 2000.

Conclusion

I introduced a model to estimate GHG emissions and reduction potentials in agriculture. I specified effective technologies, regions and emission sources with high reduction potential.

- In 2030, the maximum global reduction potential is expected to be 1.4 GtCO₂eq(35% of emission in 2000).
- High reduction potentials:
 - Region: China, India and USA
 - Emission source: Rice paddy
 - High reduction and Low cost technology: Daily spread of manure

Thank you for your attention !