Assessment of the impact of mitigation options on nitrous oxide emissions by the agricultural sector in Europe

Hans Kros, Wim de Vries, Gert Jan Reinds, Jan Peter Lesschen, Gerard Velthof

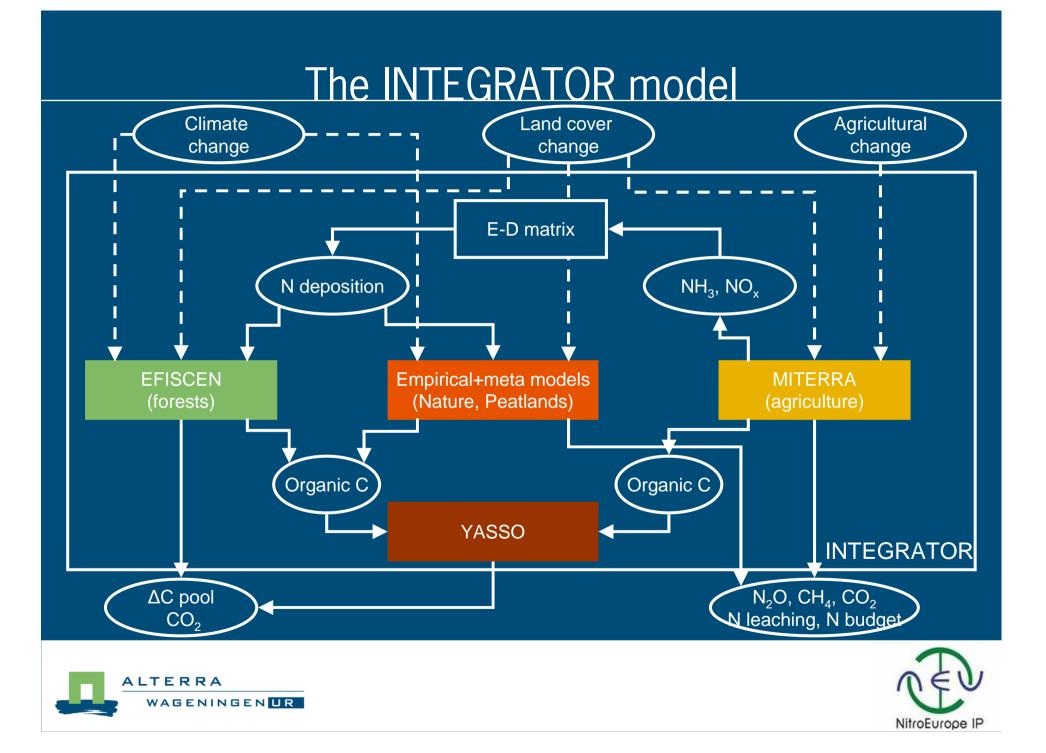
Presentation Outline

Introduction
The model INTEGRATOR
Mitigation measures
Results
Conclusions

Several methods for Large scale N₂O estimates

IPCC inventory approach using various default emission factors (Tier 1) Not suitable for the evaluation of measures Complex dynamic process models (Tier 3) • Extensive data requirement • => Mitigation at European scale cumbersome Using a relatively simple process based ecosystem model approach (Tier 2) may help to link the default IPCC emission factors (Tier 1) and complex models (Tier 3)

Aim


European wide N₂O emissions from agriculture, using a 'Tier 2' approach
Estimate the plausibility:

Comparison with country level estimate (Tier 1)
Comparison with other model results (Tier2/3)

Demonstrate the effect of agricultural mitigation options

Adaptations MITERRA in INTEGRATOR

Aspect	MITERRA	MITERRA in INTEGRATOR
Tool	Stand alone policy tool (DG ENV)	Research model
Scale	NUTS 2	NCUs
Time aspect	Steady state model	Build in a dynamic environment
N manure input	Manure distribution model	Adapted from MITERRA-EUROPE
Ammonia	From RAINS	From MITERRA-EUROPE
emission		
N leaching	MITERRA leaching model	From MITERRA-EUROPE
Nitrous oxide	From GAINS	Emission factors as a function of
emission		manure type, land use, soil type etc. In
		future including interactions N and C.

Parameterization of N₂O emissions in INTEGRATOR

N source	Туре	Application	Soil	Land use	Precip	рН	temp
		technique	type				
Fertilizer	nitrate fertilizer ammonium fertilizer urea		clay/ ara		3 groups	2 groups	3 groups
	pig slurry	surface/ incorporation					
	pig solid manure cattle slurry						
Manure	cattle soilid manure	surface/ incorporation		grassland/ arable			
	poultry manure grazing other manure			land			
Soil organic N	nett mineralization						
Biological N fixation							
Atmospheric deposition							
Crop residues	cereals vegetables arable crops						

Evaluated Measures

A. Livestock management and Housing and manure storage

- B. Soil nutrient management
- C. Water management

Livestock management, Housing and manure storage

- 1. Reduced protein content of feed
 - Reduction in N excretion:
 - 15% for cattle
 - 20% for pigs
 - 20% for laying hens and 10% for other poultry
 - \rightarrow Lower N input

2. Low ammonia emission housing and storage

- Reduction in NH₃ emission
- Lower N deposition → Lower indirect emission
- Higher N content in manure → Higher N input → Pollution swapping

Nutrient management: soil

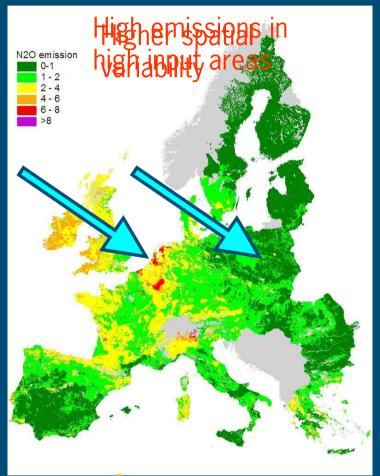
- 3. Balanced fertilization
 - \rightarrow Lower N input
- 4. Maximum manure application rate
 - \rightarrow Lower N input
 - May be compensated by fertilizer
- **5.** Manure incorporation
 - \rightarrow Lower NH₃ emissions
 - \rightarrow Higher N₂O emission (1.5×) (see Lesschen&Velthof)
- 6. Urea substitution by NH₄ fertilizers
 - \rightarrow Lower N₂O emission (0.67×) (see Lesschen&Velthof)

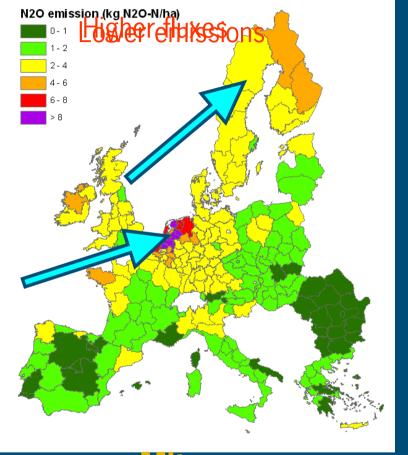
Water management

7. Restoration histosols

- Mean summer groundwater level \rightarrow 10 cm
- No fertilizer application
- \rightarrow Lower C and N mineralisation
- \rightarrow Lower N input

European wide N₂O emissions

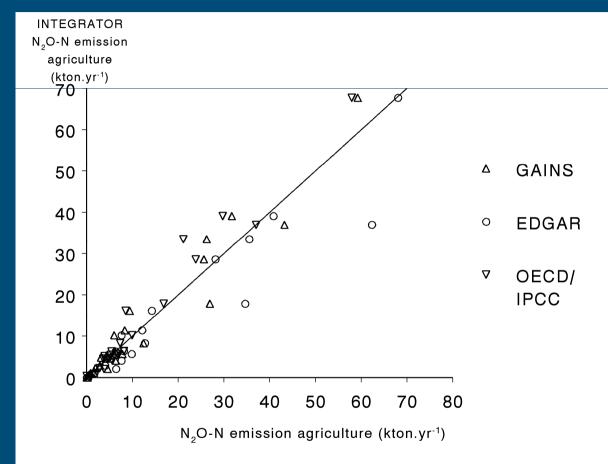

Emission type	N_2 O emissions (kton N_2 O-N yr ⁻¹)				
	Grass	Arable	Total		
Housing and storage	-	-	54		
Application	49	67	116		
Grazing	105	0	105		
Other Inputs ¹⁾	10	61	71		
Total	164	129	347		
¹⁾ Deposition mineralization fixation and crop residues					


¹⁾ Deposition, mineralization, fixation and crop residues

European wide N₂O emissions (Cont'd)

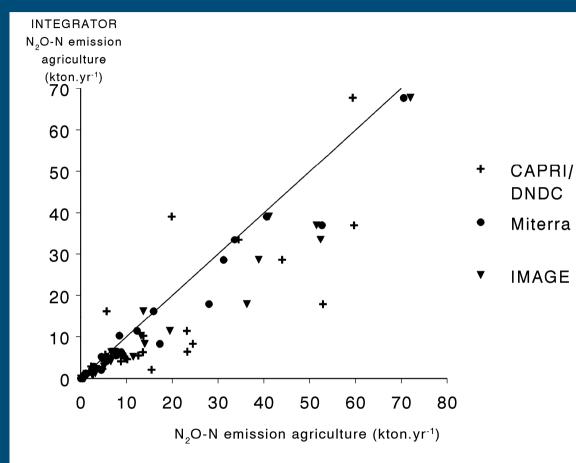
Integrator

European wide N₂O emissions (Cont'd)


Results for EU27

Model	N ₂ O _{em} (kton N ₂ O-N)	N ₂ O _{em} (kg N ₂ O-N ha ⁻¹)	EU 27 (Mha)
Integrator	347	1.8	193
Miterra	369 (+6%)	2.1 (+17%)	176 (-9%)

Comparison with GAINS, EDGAR, EMEP and OECD/IPCC

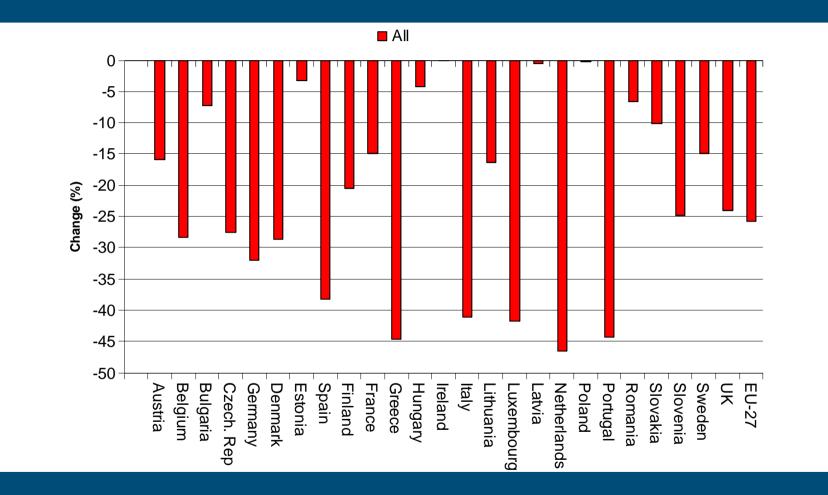


Country emissions for N_2O as derived with INTEGRATOR compared with inventory methods for the year 2000

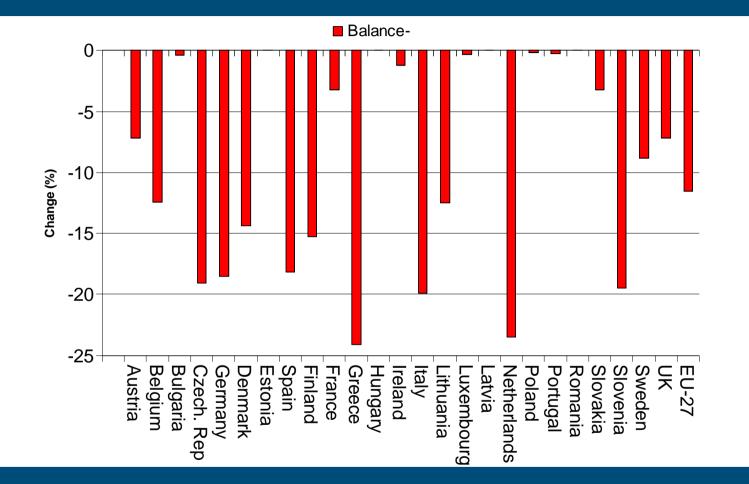
Comparison with DNDC-CAPRI, MITERRA, IMAGE

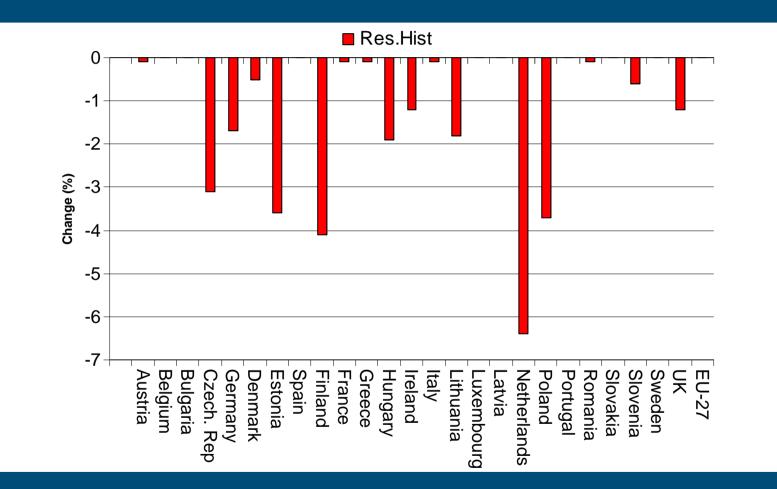
Country emissions for N_2O as derived with INTEGRATOR compared with other model results for the year 2000

Response to various mitigation measures


Relative changes in N₂O emission (%) for EU27

Measure	Housing and storage	Manure and fertilizer ap- plication	Other N in- puts ¹⁾	Total	
1. Reduced protein content	-1.4	-0.5	0.0	-1.9	
2. Low NH _{3 em} housing, storage	0.0	0.0	0.0	0.0	
3. Balanced fertilization	0.0	-8.8	-2.7	-11.5	
4. Max manure application rate	0.0	-7.1	0.1	-7.0	
5. Manure incorporation	0.0	0.2	0.0	0.2	
6. Urea substitution	0.0	-0.3	0.0	-0.3	
7. Restoration histosols	0.0	-0.8	-0.2	-1.0	
All measures	-1.4	-17.4	-2.7	-21.5	
¹⁾ Includes emission through soil inputs by deposition, mineralization, fixation and crop residues					


Effect of all measures per country


Effect of Balanced fertilization

Effect of Histosol restoration per country

Conclusions

- For the agricultural sector of the EU 27 INTEGRATOR calculates a total N₂O emission of 347 kton N₂O-N for the year 2000
- European wide N₂O emission calculated with INTEGRATOR are comparable to other model estimates
- The overall achievable reduction with the combination of all measures is about 20%, but the variation per country is high
- The most effective measures are:
 - Balanced fertilization (-12%)
 - Maximum manure application (-7%)
 - *Reduced protein content of feed* (-2%)

Thank You!

© Wageningen UR

