Role of atmospheric dynamics on interannual variability in methane concentration

Prabir K. Patra

Non-CO₂ Greenhouse Gases (NCGG-5)

Wageningen, The Netherlands 1st July 2009

Research Institute for Global Change

Rationale

Framework for online CH₄ simulation

- CCSR/NIES/FRCGC AGCM-based CTM (ACTM) run at resolution T42 L67 (top 90km)
- NCEP-2 reanalysis meteorology (U,V,T nudged)
- Hadley Center Sea-Surface Temperature & Sea-Ice Cover
- CH₄ chemistry (Sander et al., JPL Pub. 06-2, 2006) as:

CH₄+O¹D → Products (K₀¹_D =1.5 × 10⁻¹⁰) CH₄+OH → CH₃ + H₂O (K_{0H}= 2.45 × 10⁻¹² exp(-1775/T) CH₄+Cl → CH₃ + HCl (K_{Cl}=7.3 × 10⁻¹² exp(-1280/T) CH₄+hv → Products (wavelength dependent; not considered here)

• All the radicals are taken from CHASER/STRAT (Sudo et al., Takigawa et al.) models at monthly (or hourly) intervals

Surface flux types and annual budget of CH₄

ACTM: EDGAR3.2 anthropogenic; GISS natural/biogenic

			Year	Total		Tropospheric	Year	Тор	Aggr.
	Range Estim.			emissio		Budget	2000	emission	Emission
C	Reported by	A Priori Estimates,		n (E2)		(E2)	(E2)	country(E2)	(E2)
Sources	11 CC [2001]	Ig CH ₄ /yr	1988	569.4		Anthropogenic*	301.9	Brazil	54.2
Total wetlands	92-237	019	1989	570.6		Biofuel	16.0	USA	54.0
Swamps Bogs and tundra		54°	1990	571,1		Fossil fuel	102.9	Russia	51.3
Rice agriculture	25-100	60 ^d	1991	571.7		Industrial	0.9	China	47.4
Ruminant animals	80-115	93 ^d	1992	572.3		Animal + Fire	119.3	India	41.1
Termites Biomass hurning	20-20	$\frac{20^{\circ}}{52^{\mathrm{f}}}$	1993	572.9		Waste	62.7	Indonesia	30.1
Energy	23-55	52	1994	573.4		Biogenic**	273.0	Canada	17.3
Coal	75-109	38 ^d	1995	574.0		Termites	20.5	Argentina	14.9
Natural gas and		57 ^d	1996	\$74.3		Biomass Burn	59.8	Australia	11.7
other industrial	35-73	50 ^g	1997	574.7		Rice	39.4	Thailand	10.7
Ocean	10-15	10 ^h	1998	574.1		Swamps	104.4	Zaire	8.9
Hydrates	5-10	5 ^h	1999	574.5		Bogs	40.2	Nigeria	8.7
Total source	500-600	530	2000	575.0		^L Tundra	8.7	Sudan	8.6
			2001	574.7		Sinks	~580	Mexico	8.1
		A Priori Estimates,	2002	574.2		Trop. Loss	551	Venezuela	7.1
Sinks		Tg CH ₄ /yr	2003	574.9	-	Strat. Loss	29	Ukraine	6.6
Tropospheric OH	450-510	507 ¹	2004	574.6		NH Loss	334	Vietnam	6.5
Stratospheric loss	40-46	40^{K}	2005	574.8		SH Loss	246	Pakistan	6.4
Total	10-30	50 577	2006	574.8		Atmos. Burden	4999	Peru	6.3

Mikaloff Fletcher et al., GBC, 2004

Patra et al., JMSJ, 2009

CH₄ lifetime and budgets

CH₄ latitudinal gradients

Patra et al., JMSJ, 2009

CH₄ Measurement Sites – can we track emissions?

(~50 used here; >100s are in operation in 2007)

Contributing Institutes: 1. NOAA/ESRL, 2. FEA, Germany, 3. JMA, Japan, 4. EC, Canada, 5. NIWA

CH₄ latitudinal gradients: seasonal and longitudinal variations

CH₄ seasonal cycles: **Model**-Observation comparison

CH₄ growth rate IAVs: Transport domination in tropics and SH

R = 0.69 (SMO), 0.66 (CGO), 0.35 (BHD), 0.46 (SYO), 0.42 (SPO) at SH sites

CH₄ growth rate IAV (July) – dynamical control

The +10ppv isosurface and crosssections of longitudinal CH₄ anomaly

Temporal evolution of the 2007 CH₄ high positive growth rate anomaly (2007-2006)

Left col.: over Africa

Right col.: over Asia

Conclusions

- ACTM CH₄ simulations have been optimised for a combinations of Fluxes, Radicals and Transport
 - Model-observation comparisons have been satisfactory for
 - IHG & IHG seasonal cycles
 - Seasonal cycles
 - Synoptic variations
 - Diurnal cycles
 - large part of the IAVs in CH₄ (as well as others) concentration are likely to arise from atmospheric transport IAV
 - Based on EDGAR 4.0 role of anthropogenic emission on 2007 CH₄ anomaly should be explored

Acknowledgements

Modellers: Masayuki Takigawa¹, Kentaro Ishijima¹, Takakiyo Nakazawa^{15,1}

Measurements:

Byoung-Choel Choi^{2*}, Derek Cunnold³, Edward J. Dlugokencky⁴, Paul Fraser⁵, Angel J. Gomez-Pelaez⁶, Tae-Young Goo², Jeong-Sik Kim², Paul Krummel⁵, Ray Langenfelds⁷, Frank Meinhardt⁸, Hitoshi Mukai⁹, Simon O'Doherty¹⁰, Ronald G. Prinn¹¹, Peter Simmonds¹⁰, Paul Steele⁵, Yasunori Tohjima⁹, Kazuhiro Tsuboi¹², Karin Uhse⁸, Ray Weiss¹³, Doug Worthy¹⁴

Funding: RIGC/JAMSTEC