

Reducing the carbon footprint of agriculture

Hink Perdok

i.c.w. Sander van Zijderveld, David Deswysen and John Newbold

NCGG5 July 3, 2009 hperdok@nl.provimi.com

Topics to be dealt with

Demand for agricultural products and sustainability

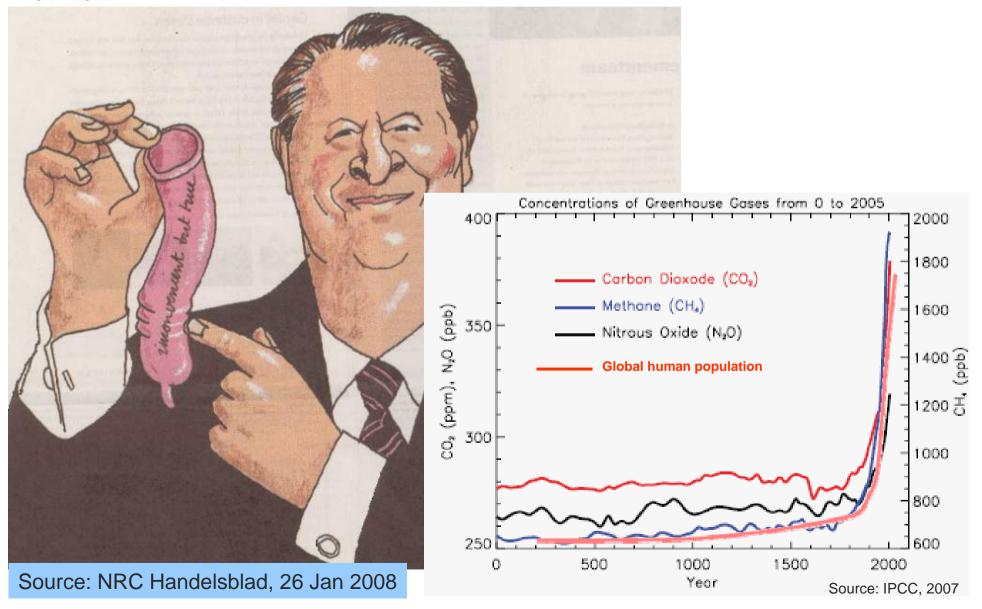
- Agriculture and GHG emissions
- Enteric methane emission by cattle
- Mitigating enteric methane emission
- CFP labelling
- Conclusions

- To feed the increasing and increasingly wealthy human population
- Food production and consumption are man-made decisions
- 1. Crop- and animal agriculture
- 2. Food processing and distribution
- 3. Consumer
 - \rightarrow What to eat
 - \rightarrow Food transport (e.g. by car or bicycle)
 - \rightarrow Food storage and preparation
 - \rightarrow Food waste and waste disposal

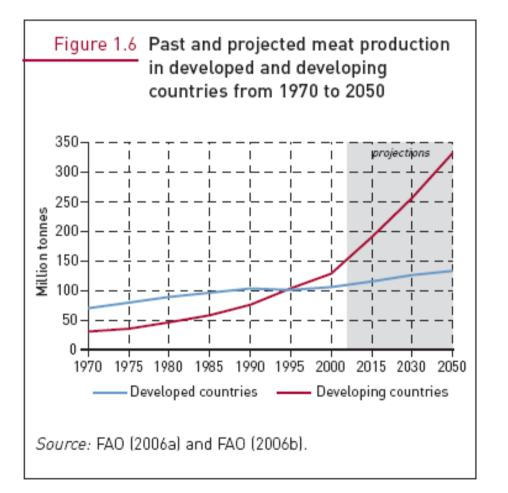
Reducing food waste by the consumer offers the easiest economic and environmental savings

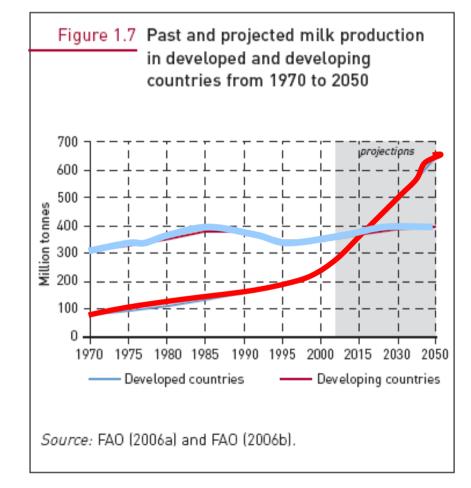
Consumers waste up to a third of the food (e.g. in UK)

Save money and the environment:


- → Plan meals (shop wisely & resist impulse buying)
- \rightarrow Get your portions right
- → Get creative with leftovers
- → Optimise fridge & freezer use
- → Increase shelf-life

Source: <u>www.wrap.org.uk</u> (WRAP = Waste & Resources Action Programme) See also: Weidema e.a. 2008 Environmental Improvement Potentials of Meat and Dairy Products


Birth control is most obvious structural solution to anthropogenic GHG. Inconvenient, but true.



Meat and milk production in the world

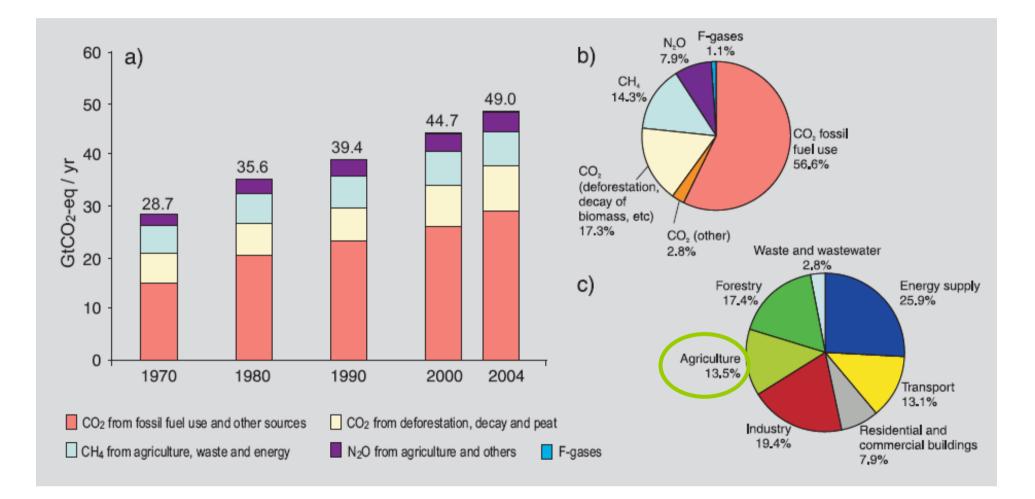
Consumption of animal protein is driven by population & income/head

Sustainability is a core criterion of food production

- Nutritious
- Healthy
- Safe
- Affordable
- Sustainable
 - → Profit
 - \rightarrow People
 - → Planet
 - CFP per unit food
 - Land use per unit food
 - Water use per unit food

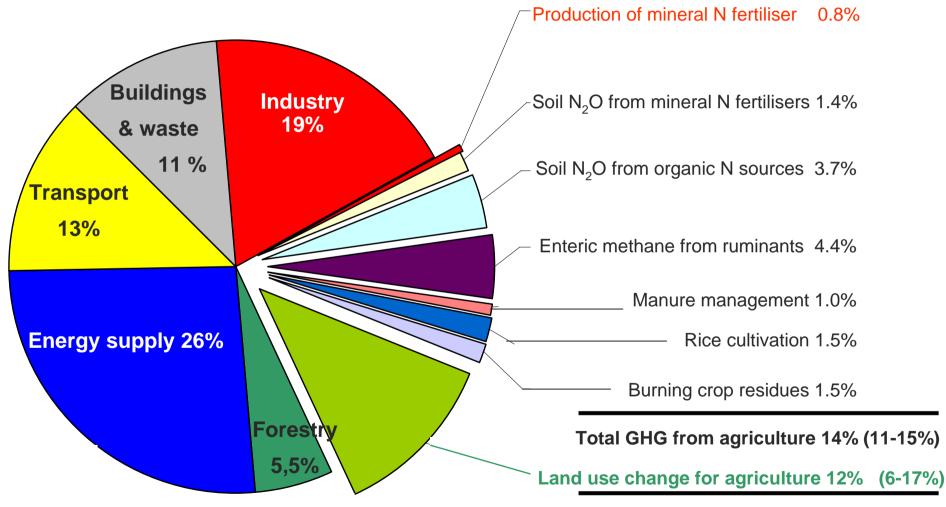
See also European Food Sustainable Consumption and Production Roundtable, May 2009

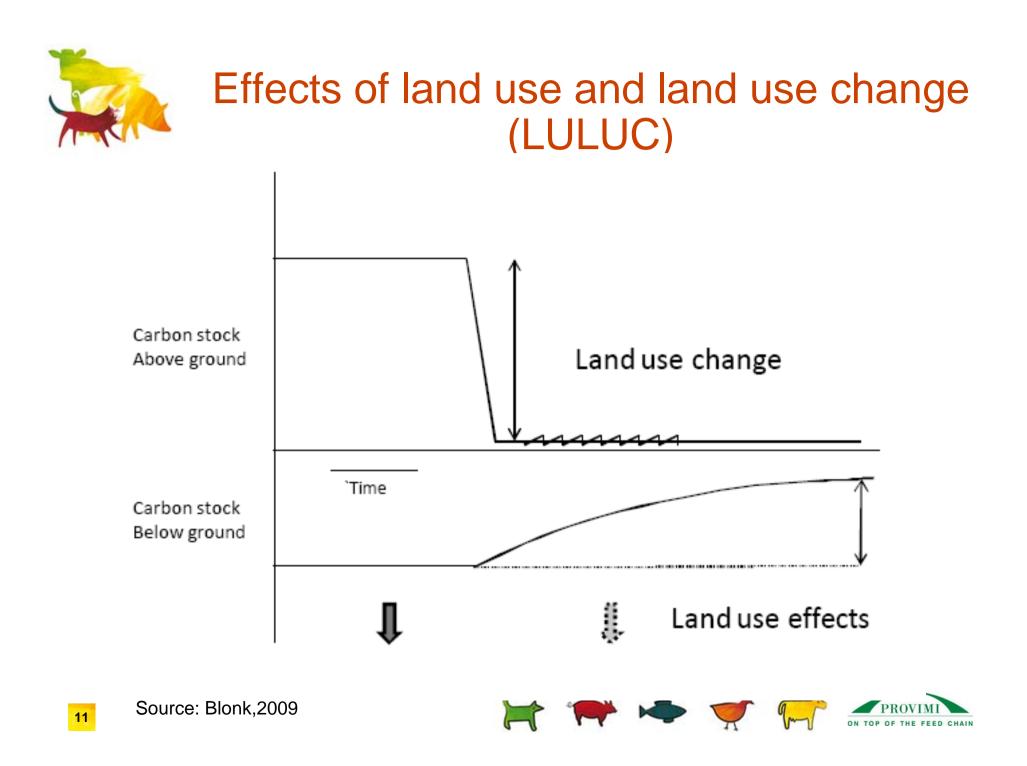
Water, the next threat to sustainability?



8

Agriculture: 13.5% of anthropogenic GHG emissions

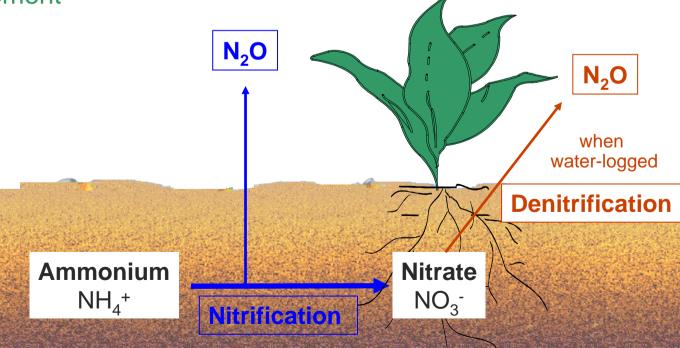

Source: IPCC, 2007 (IPCC = Intergovernmental Panel on Climate Change)



N₂O from agricultural soils and CH₄ from ruminants main components of ag.footprint Impact of land use change of much larger magnitude

Based on IPCC, 2007; note uncertainty about accuracy of data Total GHG related to agriculture: 26% (17-32%)

Methane and nitrous oxide main GHG from agriculture Methane abatement has a fast effect


GHG	% of Global Warming	CO ₂ * eq.	Increase since 1750	Projected increase per year	Half life in years	Agriculture as % of anthropogenic
CO ₂	77	1	36%	1-2%	100	1.5% excl. LULUC
CH ₄	14	25	150%	1-2%	12	47%
N ₂ O	8	298	18%	> 0.26%	114	58%

Source: IPCC (2007) *CO₂ eq. assumes 100 yr timescale

Mitigation strategies for crops and soils

- Emissions caused by land use change are as high as all other agricultural sources combined (6-17% vs 11-15%)
 - → Intensification of land already in production
 - → Reduced or no tillage
 - \rightarrow Optimum amount and timing of fertiliser application
 - → Use of nitrification inhibitors
 - → Water management

Increasing awareness of livestock's impact

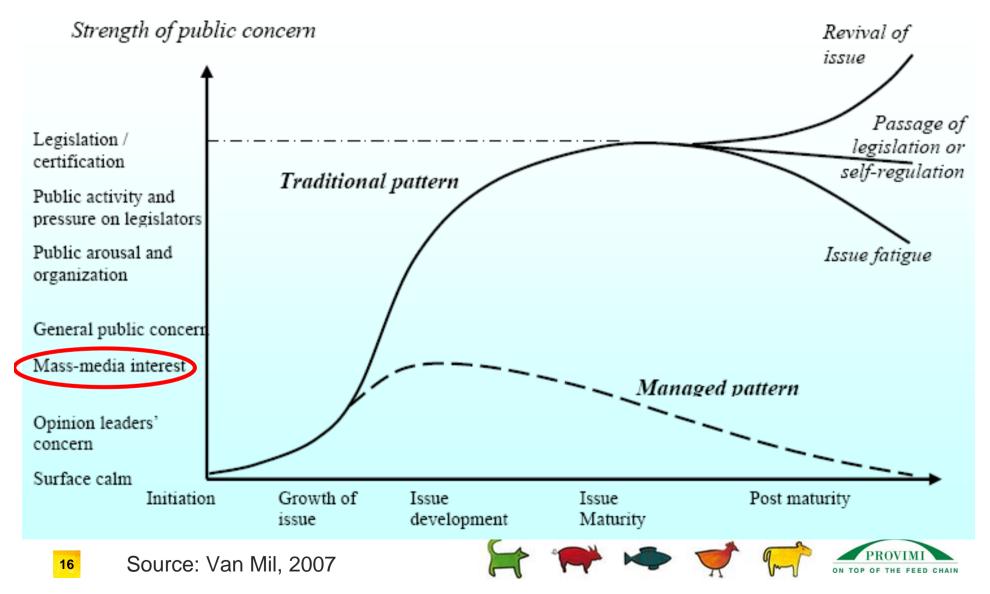
livestock's long shadow environmental issues and options

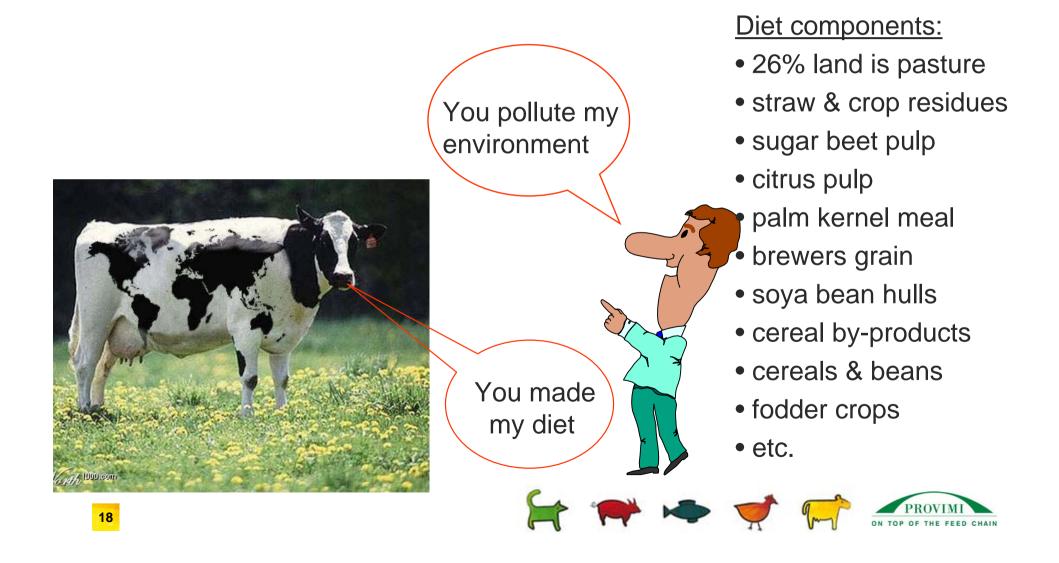
and the second

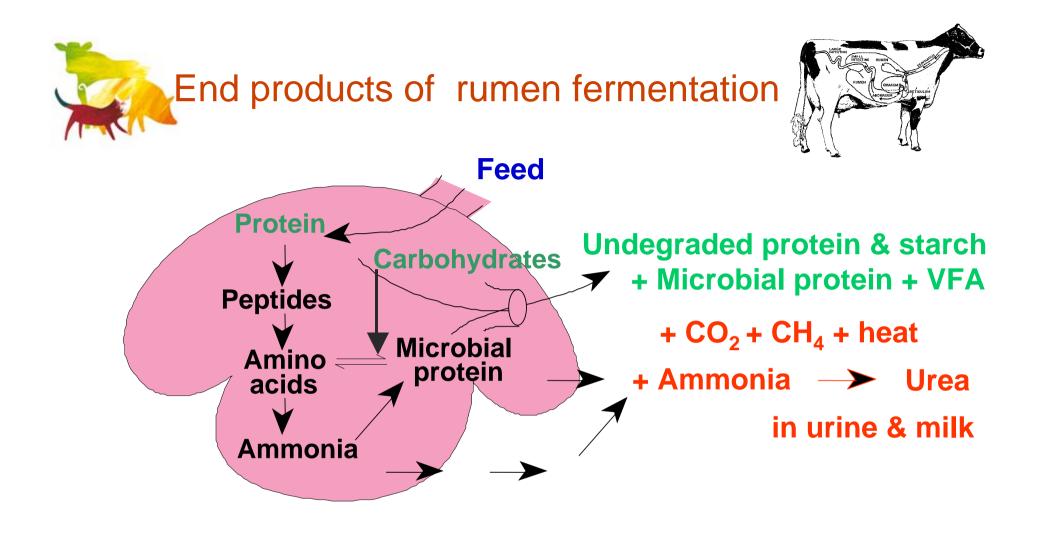
Livestock's long shadow

environmental issues and options

- H. Steinfeld e.o., 2006; FAO
- Livestock has large impact on climate change, mainly ent. CH₄
- Rising demand for animal products
- Need for finding environmentally sustainable solutions.
- We are at a turning point






- 1. Consume less ruminant product (but their feed unsuitable for man and milk is mainly produced by cattle, buffalo, sheep and goats)
- 2. Enhance production per animal per day of life but keep check on input of grain, fertilizers, irrigation, fossil fuel
- 3. Reduce enteric methane production by feeding strategies
- 4. Reduce methane loss from manure by biogas production

Ruminants unique in converting inedible fibrous feed and by-products into food

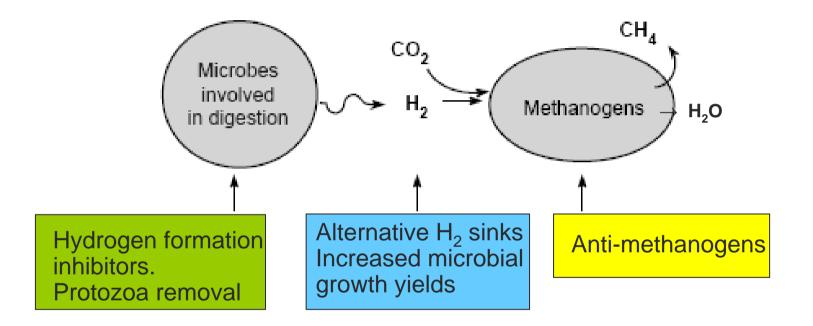
CHO + NH3 \Rightarrow Micro organisms + VFA + CO₂ + CH₄ + heat

Nutrition and environment are closely associated.

Enteric methane represents 2 – 12 % of Gross Energy

Tap the energy that gets lost as methane for:

Milk production


- Live weight gain
- Reproduction
- Immunocompetence (health)
- Sell it as carbon credits
- Avert legislation on GHG emission

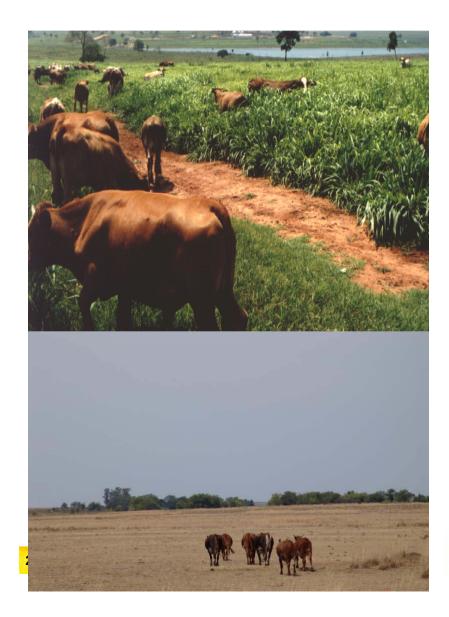
- Under anaerobic conditions in the rumen, carbohydrates are broken down to VFA. Methanogens convert excess hydrogen and carbon dioxide into methane
- 1 mol hexose + 2 $H_2O \Rightarrow$ 2 acetate + 2 CO_2 + 4 H_2 (1) 65% CH₃COOH $C_{6}H_{12}O_{6}$ 1 mol hexose $+(2 H_2)$ \Rightarrow 2 propionate + 2 H₂O (2) 25% CH₂CH₂COOH \Rightarrow 1 butyrate + 2 CO₂ + 2 H₂ (3) 10% 1 mol hexose CH₃CH₂CH₂COOH \Rightarrow CH₄ + 2 H₂O $CO_{2} +$ (4)hat the second s Source: Williams, 2000 21

Hydrogen is key in methane reduction

Every nutritional strategy to reduce methane emissions can be explained by this diagram and these three strategies

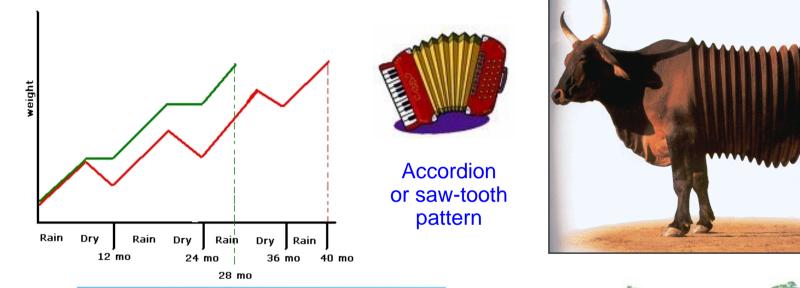
Figure from Joblin (1999) Austr. J. Agric. Res. 50: 1307-1313

Main nutritional strategies to reduce enteric fermentation


Strategy	Mode of action	Comments
Animal productivity ↑; improved nutrition & husbandry, incl. recombinant bovine somatotropin hormone (rBST)	Dilutes maintenance CH₄/kg animal product ↓	Avoid competition for grain; rBST not allowed in EU
Roughage digestibility 1	DMI îî; CH₄/kg DMI ↓	CFP of fertilisers, chemicals
Defaunation	Protozoa \Downarrow ; H ₂ \Downarrow ; archae \Downarrow	Microbial adaptation?
Saponins, e.g. Yucca schidigera	Protozoa \Downarrow ; H ₂ \Downarrow ; archae \Downarrow	Microbial adaptation?
Tannins, e.g. sainfoin	Protozoa & archaea inhibition	Microbial adaptation?
More concentrate & starch in diet	Propionate $\hat{1}$; H ₂ sink	Competes with monogastrics
PUFA, e.g. linseed C18:3; fishoil, EPA, DHA	Cellulolysis \Downarrow ; small H ₂ sink;	Dose dependent; DMI may drop
Organic acids e.g. fumaric, malic	H ₂ sink	Small effect, expensive
Ionophores, e.g. Moninsin	Propionate $\hat{1}$; H ₂ sink	Adaptation; not allowed in EU
Enzymes, yeasts and probiotics	Propionate $\hat{1}$; H ₂ sink, pH	Varying results
Other plant extracts, e.g. garlic, eucalyptus	Archaea inhibition	Microbial adaptation?
Saturated fatty acids, e.g. C12:0; C14:0	Archaea inhibition	DMI ↓
Immunization against archaea	Archaea inhibition	Research required
Bacteriocins & archael viruses	Archaea inhibition	Research required

23

Reviews: Moss ea, 2000; Broadi ea, 2004; Kebreab ea, 2006; Monteny ea, 2006; Beachemin ea, 2008; Iqbal ea, 2008



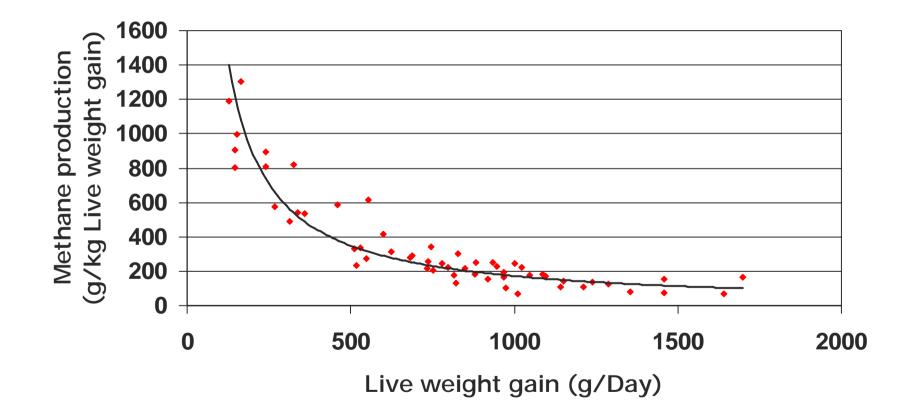
Raising animal productivity easiest where animals have (seasonal) nutrient imbalances

Supplementary feeding improves yield/day of life and lowers GHG per kg animal product

Effect of age at slaughter (**480 kg**) on enteric methane production of a beef animal (excl. mother)

Slaughter age (years)	5	4	3	2
Relative slaughter age	100	80	60	40
Months in feedlot	-	-	-	3
Live weight gain (g / day)	247	309	412	618
Estimated FCR	33	24	17	9
Feed digestibility %	55	60	65	70 / 80
Enteric methane as % of GE	7.0	6.5	6.0	5.5 / 3.0
kg methane in lifetime	337	224	145	67
kg CO ₂ eq / kg lwt gain	17.4	11.6	7.5	3.4
Relative CO ₂ eq / kg gain	100	66	43	20

Productivity is key, usually also for economics


Based on data of IPCC 2006 Tier 2 Guidelines

26

Enteric methane production in beef cattle relative to live weight gain.

Inverse relation between milk yield and enteric methane in g/kg milk (relative)

	kg milk per year			
kg body weight	4,000	5,000	6,000	
500	23.8 (100)	20.0 (84)	17.5 <mark>(74)</mark>	
600	25.8 (108)	21.6 (91)	18.3 (77)	
700	27.8 (117)	23.2 (97)	20.2 (85)	

Source: Kirchgessner e.a., 1996

	kg milk per year			
kg body weight	600	1200		
275	97 (408)	48 (204)		

Based on data of IPCC 2006 Tier 1 for India

Mitigation by increasing production/animal and reducing total number of animals

- Higher yield/day of life
 - → younger age at first calving & shorter calving intervals
 - \rightarrow shorten or eliminate dry period
 - → minimise involuntary culling
 - → reduce replacement stock
 - → higher longevity
 - → increase milking frequency
 - → improve genetic merit & persistency
 - \rightarrow optimise diet formulation and supply of drinking water
 - → improve management
 - \rightarrow improve housing, shading and cooling
 - → improve animal health & disease control
 - \rightarrow improve feed conversion efficiency

Productivity improvement may not be enough for absolute reductions

- Higher yield lowers methane / kg beef or milk
- Increase in human population & welfare \Rightarrow reduce GHG faster
- Avoid pollution swapping from methane to N₂O or CO₂
- Search goes on for cost-effective strategies e.g. feed additives
- Look at entire food chain, incl. waste
- Use holistic approach incl. Life Cycle Analysis (LCA)

31

Experimental feed additive gave 10 % lower enteric methane emission, but uneconomical

	Control	Supplement	Suppl/Contr
CH ₄ emission (g cow ⁻¹ day ⁻¹)	362 ^a	325.5 ^b	0,90
CH ₄ emission (g kg DMI ⁻¹)	21.72 ^a	19.76 ^b	0,91
CH_4 emission (% of GEI)	6.36 ^a	5.79 ^b	0,91
CH ₄ emission (g kg milk ⁻¹)	12,82	12,76	1,00
Milk urea	22 ^a	17 ^b	0,77

Supplement: 0.4% lauric acid (C12:0); 1.2% myristic acid (C14:0); 1.6% linseed oil (linoleic C18:3); 0.8% calcium fumarate

Farmers will only apply if economic

Source: Perdok et al, 2007 (SenterNovem sponsored)

Emission trading has no financial appeal for Dutch dairy farmers

Assumptions:

- → Enteric CH₄ emission 0.36 kg / cow/ day * 23 = 3 t CO₂ eq. / year
- → Save 20%; 70 cows @ 8.2 tonnes milk = 575 t. milk
- → 20.000 dairy farmers; 11.5 Mt milk @ €250 / t.
- → Value 1 EU Allowance \in 14,- (Dec. 2010)
- Gross carbon revenue per farm for 42 t CO_2 eq. = \in 592 / yr
 - Dutch dairy sector € 12 million / year

CO₂ value €1- per t. milk or 0.4% of value of milk

Remarks:

- → Cost of additive not taken into account
- → 1000 t CO_2 eq. minimum trading volume
- \rightarrow CO₂ savings are to be above "business as usual"
- → Considerable costs for administration and verification
- \rightarrow Need for monitoring at each farm?

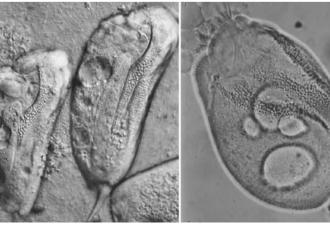
Measurable, reportable and verifiable CH4 reduction in S. America (\Rightarrow CER). No enteric CH₄ projects yet

Lagoon with swine manure emitting $6,000 \text{ t } \text{CO}_2 \text{ eq per}$ annum.

Anaerobic digester with capture and combustion of methane (biogas). GHG emission dropped 87%.

Knowledge of rumen microbiology essential

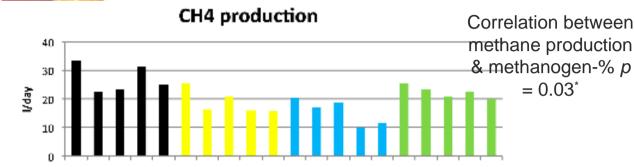
Source: Alimetrics, 2008 in Provimi-WUR-Alimetrics project; SenterNovem sponsored

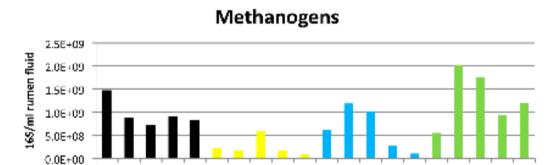


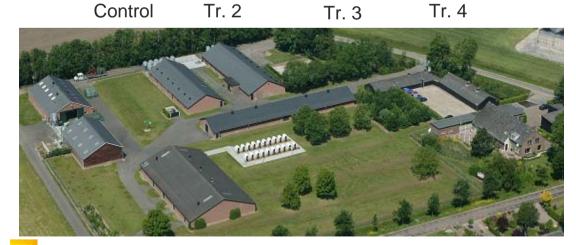
Protozoa species	Finland	De Viersprong	KSU
Diplodium dentanum, 3 strains	73 %	46 %	15 %
Epidinium caudatum	11 %	13 %	0 %
Eudiplodium maggii 🔨	3 %	0 %	2 %
Entodinium caudatum	1 %	8 %	53 %
Isotricha prostoma	3 %	8 %	0 %

Isotricha intestinalis

34

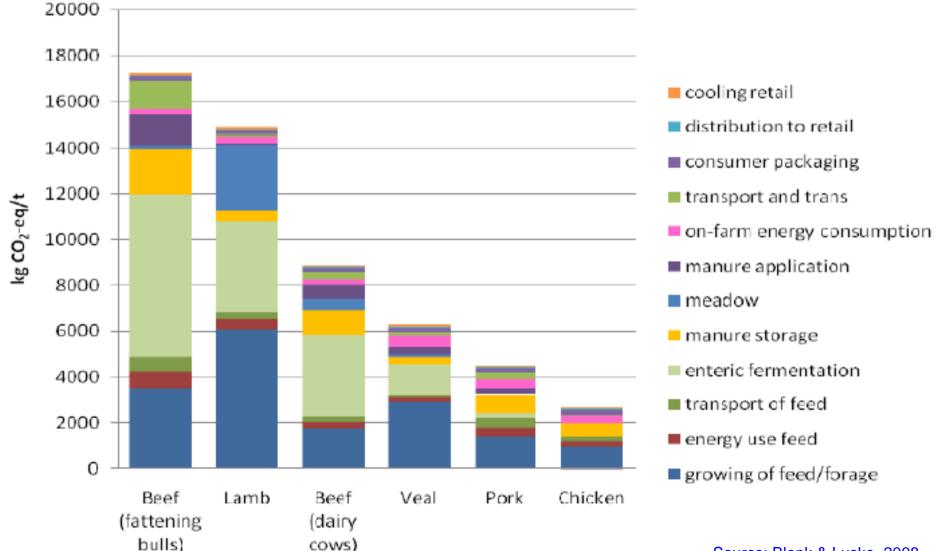






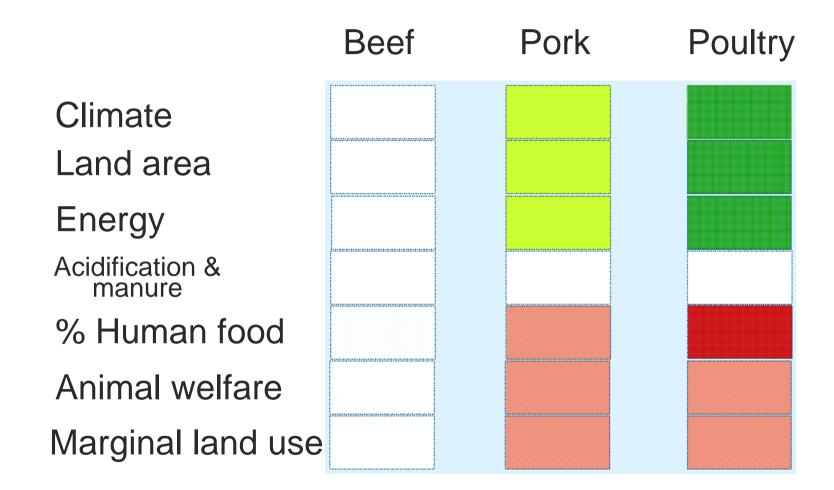
Knowledge of rumen microbiology essential

³⁵ Source: Provimi-WUR-Alimetrics, 2009; SenterNovem project



Carbon footprint and food labelling

- CFP = The total amount of carbon dioxide equivalents emitted over the full life cycle of a product (Life Cycle Analysis)
- Part of a larger picture (e.g. competition with human food)
- Uniform and reliable assessment methodologies
 - → E.g. large differences in LULUC allocation, 20 years (PAS 2050)
 - \rightarrow Large differences in product boundaries
 - \rightarrow Economic allocation or e.g. energy allocation
- Communication producers & consumers
- Avoid "greenwashing"
- Early days for meaningful Eco-labelling



Source: Blonk & Luske, 2008

CFP is only part of the sustainability footprint and choices should not be made on CFP only

Shifts due to allocation on economic value Change in value of main product alters value of by-product

- Arbitrary crop-animal boundary including LULUC
- Shifts between animal species
 - \rightarrow E.g swine fed moist by-products have a low CFP
 - → Swine herd expands \Rightarrow grain in diet \Rightarrow CFP increases
- Practicing with CFP calculations for several years will aid development of mitigation strategies (Lantmännen, 2009)

- Increasing crop and animal productivity is the most efficient way of reducing the CFP per unit product.
- Consumers can contribute by reducing food waste
- Economics will drive adoption of GHG reduction strategies
- Carbon trading does not provide an economic incentive
- LCA is only one part of a much larger picture
- It is too early for meaningful Eco-labelling of food
- CFP of agricultural products useful as a management tool:
 - → Improves image & creates value throughout food chain
 - \rightarrow Leads to innovations
 - \rightarrow Offers business opportunities

