Netherlands Environmental Assessment Agency

Climate forcing from new HFC scenarios

Offsetting climate benefits Montreal Protocol

Guus Velders

NCGG-5, Wageningen, June 30, 2009

Well known benefits Montreal Protocol

- Large decreases in CFC production (>90%) and emissions (60-90%)
- Concentrations also decreasing
- Emerging evidence of start of ozone layer recovery
- Full recovery around 2050, later in polar regions

HFCs offset climate benefits Montreal Protocol

CFCs, HCFCs are greenhouse gases \rightarrow

Dual protection Montreal Protocol: to Ozone layer and Climate change

Already achieved climate benefits 5-6 times larger than Kyoto Protocol targets for 2008-2012

New: Climate benefits can be offset by projected increases in HFCs by 2050

New: HFC emissions can reach 9-19% of CO₂ emissions by 2050

Effects Montreal Protocol on climate

Netherlands Environmental Assessment Agency

HFC scenarios - Guus Velders, June 30, 2009

Radiative forcing leading to climate change

Netherlands Environmental Assessment Agency

HCFCs: Accelerated increases

- Global phaseout of CFCs (1996, 2010) → increases in HCFCs
- Accelerated increases from use in developing countries
- HCFC phaseout in developed (2020) and developing (2030) countries ->

Montzka et al., GRL (2009)

Netherlands Environmental Assessment Agency

Strong growth projected in HFC use

- Global phaseout CFCs and HCFCs
- Much of application demand for refrigeration, air conditioning, heating and thermal-insulating foam production to be met by HFCs
- Demand for HFCs increases globally

Photo W. Hoogakker, Jordan

Netherlands Environmental Assessment Agency

HFC scenarios - Guus Velders, June 30, 2009

Scenarios: update of previous estimates

- Long-term scenario: IPCC/SRES (2000)
 - Developed countries: demand ~ population (0.1-0.4%/yr)
 - Developing countries: demand ~ GDP (4-6%/yr)
 - 1990s: HFCs hardly in use
- New information:
 - Increased HCFC consumption developing countries
 - Atmospheric observations of HCFCs and HFCs
 - Patterns of replacements of HCFCs by HFCs
 - Provisions of the 2007 accelerated HCFC phaseout
 - Increases in HFC-134a use in mobile air-conditioning
 - Saturation of HFC consumption
 - EU mobile AC regulation (past 2011/2017 GWP<150)

Scenarios: Increases in HCFC consumption

- Developed counties:
 - HCFC consumption decreases → phaseout already in progress
- Developing countries:
 - HCFC consumption increase: 20%/yr
 - CFC+HCFC increase: 8%/yr
- HCFC consumption = starting point new scenarios

Data reported to UNEP

Netherlands Environmental Assessment Agency

Replacing HCFCs with HFCs

- Refrigeration, air conditioning, foam production
- Replacement scheme developed countries:
 - HCFC-22 → 35% R404A, 55% R410A, 10% NIK
 - HCFC-141b → 50% HFC-245fa, 50% NIK
 - HCFC-142b → 50% HFC-134a, 50% NIK
 - R404A, R410A: Blends of HFC-32, -125, -134a, -143a
- Applied to developing countries
- Mobile AC: HFC-134a
- Foam, aerosol: HFC-365mfc, HFC-152a (minor use)

HFC scenarios – Guus Velders, June 30, 2009

Large projected growth in HFC consumption

- HCFC phaseout schedule
- HFC consumption, emissions in developing countries up to 800% greater than in developed countries in 2050 Saturation in consumption: • Developed countries after HCFC phaseout in 2020
- - Developing countries consumption does not exceed per capita consumption in developed countries

HFC scenarios - Guus Velders, June 30, 2009

HFCs: Increases in mixing ratios

- HFCs do not deplete the ozone
- HFCs are greenhouse gases GWP(100 yr):
 - HFC-125 3,500
 - HFC-134a 1,430
 - HFC-143a 4,470
 - HFC-152a 120
- Observed mixing ratios and derived emissions constrain scenarios

1998

1990

1994

Montzka, NOAA/ESRL

2006

2002

Global emissions of HFCs

- Global HFC emissions in 2050: 5.5–8.8 GtCO₂-eq yr⁻¹
- equivalent to 9–19% of global CO₂ emissions BAU
- Larger in comparison with CO₂ stabilization scenarios from IPCC/AR4

Scenarios exceed previous estimates

- IPCC/SRES (2000) emissions up to 2100
- IPCC/TEAP (2005) emissions up to 2015
- Larger emissions past 2015:
 - Other HFCs than used in SRES: HFC-125, HFC-143a: use confirmed by observations
 - Higher starting point
 - Accelerated HCFC phaseout

Netherlands Environmental Assessment Agency

Emissions from accelerated HCFC phaseout

- Montreal Protocol adjustment of Sept 2007 → accelerated HCFC phaseout
- Effects on climate were considered
- Use of low-GWP alternatives advocated
- These scenarios: HCFC decreases compensated by HFC increases

Radiative forcing of HFCs

- Global radiative forcing HFCs in 2050: 0.25–0.40 W m⁻²
- Compared with CO₂ (BAU) of 2.9–3.5 W m⁻²
- HFCs equivalent to that from 6–13 years of CO₂ emissions

Offsetting climate benefits Montreal Protocol

- HFC emissions offset climate benefits Montreal Protocol:
- CFC emissions peaked in 1988:
 9.4 GtCO₂-eq yr⁻¹
- Could have reached by 2010: 15–18 GtCO₂-eq yr⁻¹ (in the absence of Montreal Protocol regulations)
- HFC emissions by 2050:
 5.5–8.8 GtCO₂-eq yr⁻¹

Potential of HFC mitigation

- Hypothetical scenarios:
 - Global consumption freeze (cap) in 2014/2024
 - Followed by 2% and 4% annual reductions
- Other scenarios analyzed:
 - Lieberman-Warner
 - Mobile AC EU regulation applied globally
 - Effects much smaller

HFC scenarios – Guus Velders, June 30, 2009

Potential of HFC mitigation (2)

Scenario: freeze & -4%/yr

- Total HFC emissions reduced through 2050 by 70– 113 GtCO₂-eq
- Radiative forcing HFCs peaks near 2040
- Radiative forcing HFCs reduced by 0.18–0.30 W m⁻² in 2050
- Equivalent to CO₂ RF: from 6–13 years to 2–3 years

Are alternatives available?

- Not-in-kind alternatives:
 - Non-halocarbons, different technologies
 - Phaseout of CFCs in 1980-1990s → 80% replaced with nonhalocarbons alternatives
- For some applications: CO₂, ammonia, hydrocarbons
 - Flammability, toxicity considerations
- New halocarbons: Perflurobutenes, HFOs, etc.
 - Lifetimes days to weeks
 - GWP <10
 - Don't affect ozone layer: ODP = 0
 - Currently being developed; approval pending

Life cycle climate performance (LCCP)

- Important is the total effect on climate
- Direct climate forcings
 - GWP-weighted emissions, Radiative forcing
- Indirect climate forcings
 - Energy used or saved during the application lifespan
 - Energy used to during manufacturing
- Total effect on climate \rightarrow Life cycle climate performance

On the political arena

- US proposals
 - Waxman-Markey (accepted by the House, June 26)
 - Boucher-Dingell (House)
 - Lieberman-Warner (Senate)
 - Explicit reductions in HFC consumption

- UNFCCC: Climate negotiations Copenhagen (Dec. 2009)
- EC statement: controls on HFCs in new climate treaty
- Montreal Protocol
 - Geneva workshop (July 2009), preparing for MOP Cairo (Nov. 2009)
 - Micronesia, Mauritius: Proposal to include HFCs in Montreal Protocol
 - Effects on climate considered ->

Montreal Protocol and Kyoto Protocol

Montreal Protocol:

- Protection of ozone layer (UNEP treaty 1987)
- Production and consumption
- Gases: CFCs, halons, HCFCs, methyl bromide, etc.
- Phase-out schedule (CFCs 2010, HCFCs 2030)
- Climate considerations taken into account

Kyoto Protocol:

- Protection of climate (UN treaty 1997)
- Emissions
- Basket of 6 gases: CO₂, CH₄, N₂O, HFCs, PFCs, SF₆
- ~5% reduction from 1990 by 2008-2012
- Does not cover ozone depleting compounds

HFCs in Montreal Protocol?

Yes, because:

- HFC uses are the result of phaseout of CFCs, HCFCs
- Same applications as CFCs, HCFCs
- Instruments and know-how available
- Climate considerations taken into account

No, because:

- HFCs do not deplete the ozone layer
- Already covered by Kyoto Protocol
- Kyoto: emissions reductions of "gases not covered by the Montreal Protocol"

HFCs offset climate benefits Montreal Protocol

Dual protection Montreal Protocol: to Ozone layer and Climate change

- Climate benefits can be offset by projected increases in HFCs
- HFC emissions can reach 9-19% of CO₂ emissions in 2050
- Large projected growth mainly in developing countries
- Energy used during whole life cycle is important

Study in close collaboration with ...

- John Daniel, NOAA/ESRL
- Dave Fahey, NOAA/ESRL
- Mack McFarland, DuPont
- Steve Andersen, US-EPA

Thank you for your attention

