

ROYAL HASKONING

consultants architecten ingenieurs

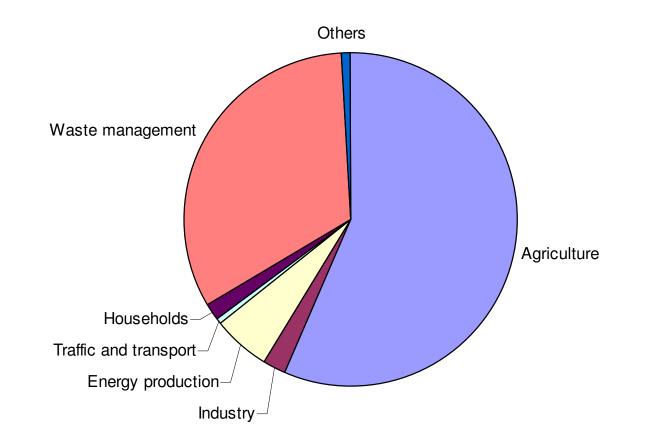
Dramatic reduction in emissions of methane from landfills in the Netherlands

June 2009

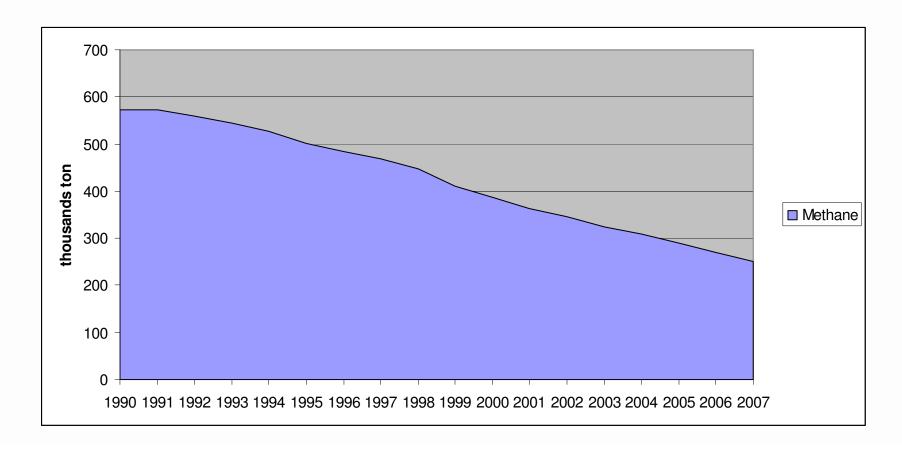
Reduction of methane from Dutch landfills

- Introduction
- Methane emissions from Dutch landfills
- Basic assumptions
- Additional measures
- Feasibility of potential measures
- Conclusions

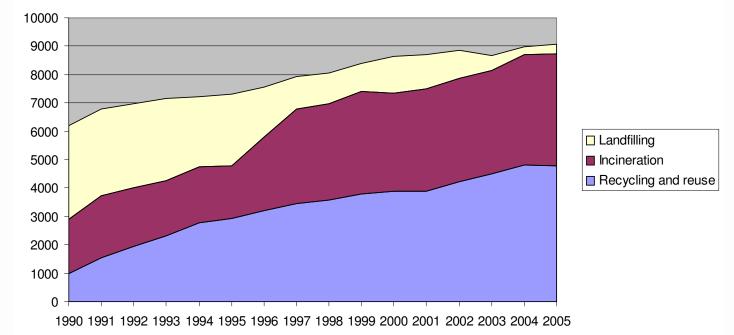
Assignment: Senter Novem Reduction Programme non- CO_2 greenhouse gases (Reductieplan niet- CO_2 broeikasgassen or RQB)



- Methane emissions from landfills in the Netherlands
 - 1990: 6% of total greenhouse gas emissions
 - 2007: 3% of total greenhouse gas emissions


Methane sources in the Netherlands (2007)

Reduction of methane from landfills


- 572 kton methane in 1990
- 243 kton methane in 2007

Reduction of methane from landfills

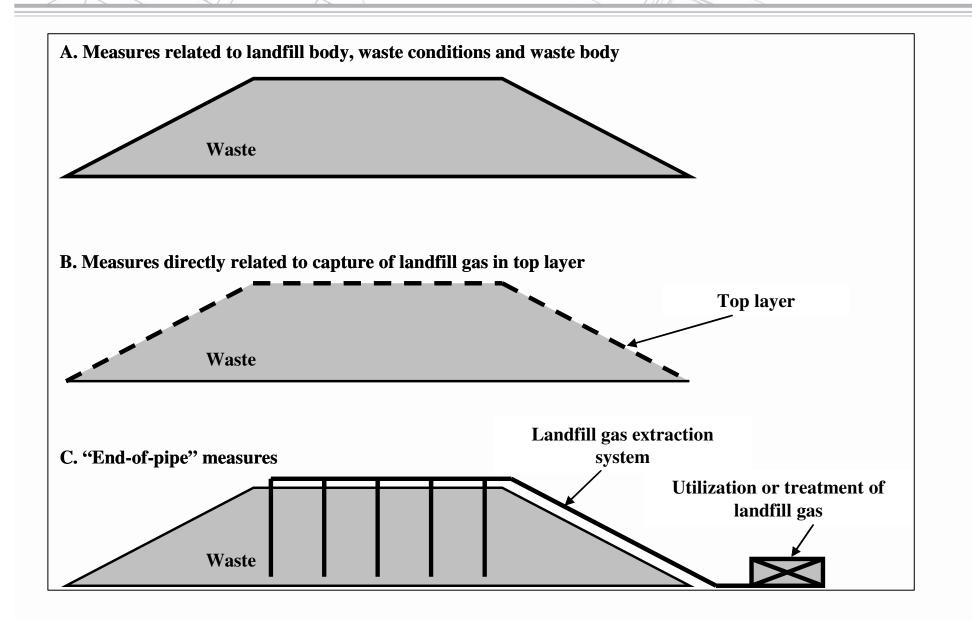
- Less waste disposal
- Separate collection of biodegradable waste

- The use of landfill gas for generating power
- Flaring of landfill gas

Basic assumptions

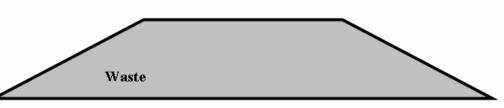
ROYAL HASKONING

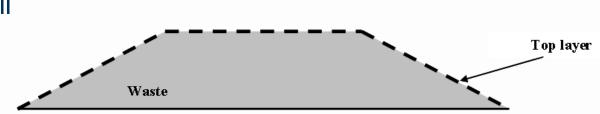
Landfills in the Netherlands


- Former landfills
 - approximately 4000
- Medium size landfills
 - closed before 1-9-1996
 - organic household waste
 - approximately 30
- Landfills in use
 - approximately 50
 - guidelines (BAT)
 - landfill gas collection
 - landfill gas utilization

Additional measures (types)

Additional measures

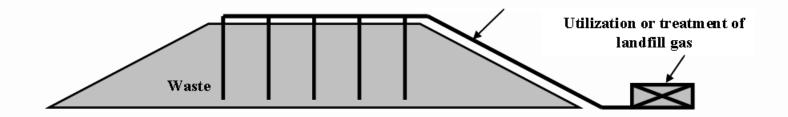



A Landfill body and waste

- A1 shift waste to a sanitary landfill
- A2 Waste mining
- A3 Anaerobic bioreactor landfill.
- A4 Aerobic bioreactor
- A5 Adjusting waste body shape
- A6 Waste pretreatment
- A7 Waste management

B Landfill gas capture

B1 Methane oxidation in top layerB2 Early sealing of landfillB3 Aeration of top layer



Additional measures

C End of pipe techniques

- C1 Installment of additional extraction wells
- C2.1 Flaring of low-calorific landfill gas (30% to 45% CH4)
- C2.2 Flaring of low-calorific landfill gas (15% to 30% CH4)
- C2.3 Flaring of low-calorific landfill gas (8% to 15% CH4)
- C.2.4. Collection and flaring of landfill gas without the use of compressor
- C3 Gas utilization by ORC (Organic Ranking Cycle)
- C4 RTO (regenerative thermal oxidation)
- C5 Separate extraction and treatment of high-calorific and lowcalorific landfill gas
- C6 Discontinuous landfill gas extraction
- C7 Optimization of existing landfill gas extraction systems

Additional measures

Most promising (after multi criteria analysis)

C2.1 Flaring of low-calorific landfill gas (30% to 45% CH4)

C1 Installment of additional extraction wells

B2 Early sealing of landfill

C7 Optimization of existing extraction systems

Feasibility of potential measures

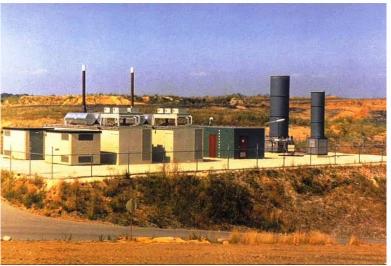
Former landfill types (assumptions)

Scenario	Operation Period	Area (hectare)	Waste amount (m3 per year)
1 Very old landfill	1950 — 1960	2	4000
2 Small old landfill	1975 – 1980	2	8000
3 Large old landfill	1970 – 1985	10	54000
4 Small landfill	1990 – 1995	2	12000
5 Large landfill	1985 – 1995	15	150000

Landfills in use

Feasibility of potential measures

Revenues and feasibility at former landfills


Scenario	Operation period	Revenues period 2009 – 2020 (Euro)	Conclusions (summary)
1 Very old landfill	1950 1960	2,500	Revenues do not cover costs of measures
2 Small old landfill	1975 1980	23,000	Revenues do not cover costs of measures
3 Large old landfill	1970 1985	500,000	 Revenues are calculated for 100% utilization of methane. In practice a maximum of 70% is realistic. Then revenues will not cover costs of measures (over a period of 12 years).
4 Small landfill	1990 1995	156,000	Revenues do not cover costs of measures
5 Large landfill	1985 1995	3,132,000	 Flaring of low-calorific landfill gas and increasing the amount of gas wells might be cost effective. Early sealing of landfill specific for landfill gas capture is not viable. A site specific business case shall give further insight in potential measures.


Feasibility of potential measures

Landfills in use

- Have to fulfil guidelines
- Best Available Technology
- Additional measures have minor impact on methane emissions in the Netherlands
- Quick win: Optimization of existing landfill gas extraction systems

- Significant reduction of methane emission from landfills since 1990
- Additional measures in general not cost effective
- Low-calorific gas flares most promising
- Several potential measures are expected to be feasible at large former landfills
- Quick wins at landfills in use, by optimization of the extraction system

Maria Vatamanu

M.Vatamanu@senternovem.nl

René Boerboom

R.Boerboom@royalhaskoning.com

Thank you for your attention!